Купить продукцию Antec дешевле (количество ограничено)!
Главная > Обзоры
Обзоры

Отобрать обзоры и тесты для:

Революция на пороге: новые блоки питания Antec, Enermax и Seasonic

Источник: Fcenter от 02.03.2009


Введение

Участники нашей сегодняшней статьи — старшие модели блоков питания трёх разных производителей, причём старших не просто по своей мощности, а по вложенным в них технологиям. Все три компании уверяют, что рассматриваемые ниже блоки питания представляют собой вершину прогресса, в них используются новейшие схемотехнические решения, причём некоторые — впервые. Разумеется, пройти мимо такого мы не могли: то, что сегодня является вершиной прогресса, завтра станет вполне массовым решением.

Так как обещанные нам новшества — не косметические, вроде модных в этом сезоне расцветок вентиляторов, а на уровне схемотехники и принципов работы импульсных блоков питания, то наиболее интересные моменты мы будем рассматривать по возможности подробно. К сожалению, у многих авторов это означает либо дословное перепечатывание рекламных брошюр (в результате, например, за блоками Seasonic в списке ключевых характеристик числится «сотовая структура вентиляционной решётки», хотя, по самым скромным прикидкам, она такая минимум у 95 % имеющихся в продаже блоков питания среднего и верхнего классов), либо распаивание блока на составные части с перечислением типов транзисторов и диодов (занятие трудоёмкое, но практической пользы в общем-то не несущее — марки транзисторов интересны разве что людям, которые эти блоки ремонтируют). Мы же, чтобы не уподобляться большинству, постараемся рассмотреть именно особенности схемотехники новых блоков, отличающие их от решений вчерашнего дня — на уровне принципиальных схем (разумеется, несколько упрощённых относительно реального блока), из которых можно было бы понять не столько какие транзисторы стоят в этом блоке, сколько зачем они стоят именно так и почему производитель называет это преимуществом.

Для понимания соответствующих частей статьи (в описании каждого блока они выделены в подраздел «Схемотехника») требуется некоторое знакомство с электроникой — как минимум, представления о сути принципиальных схем и работе отдельных деталей в них. Для специалистов и просто радиолюбителей, желающих подробно познакомиться с теорией и практикой реализации описываемых решений, мы будем также приводить ссылки на соответствующие статьи.

Если же вы просто подбираете хороший блок питания, а потому особенности схемотехники вас не интересуют, то принципиальные схемы можно просто пролистывать — все прочие разделы, включая собственно тестирование, выполнены в соответствии с нашей обычной методикой.


Методика тестирования

Описание методики тестирования, используемого нами оборудования, а также краткое объяснение, что означают на практике те или иные паспортные или же измеряемые нами параметры блоков питания, можно найти по следующей ссылке: «Методика тестирования блоков питания». Если вы чувствуете, что недостаточно хорошо ориентируетесь в цифрах и терминах, которыми изобилует статья – пожалуйста, ознакомьтесь с соответствующими разделами указанного описания, надеемся, оно прояснит многие вопросы.

Ознакомиться с полным перечнем побывавших в нашей лаборатории моделей можно по ссылке «Каталог протестированных блоков питания».


Antec Signature SG-850

Несмотря на то, что в продуктовой линейке Antec блоки питания Signature — не самые мощные, именно они официально считаются старшими моделями. Производитель обещает нам стабильность, мощность, тишину и высокую эффективность — блоки Signature сертифицированы на соответствие стандарту «80 PLUS Bronze» (КПД не ниже 82 % при нагрузке от 20 % до 100 %).

Производитель блока — компания Delta Electronics.

Упаковка и комплект поставки



Коробка сделана довольно оригинально: она из толстого чёрного картона с ярко-жёлтой полосой посередине. На верхней поверхности красуется золотая надпись «Antec», на боковой, приглядевшись, можно увидеть выдавленную чёрным по чёрному надпись «Signature 850 watt power supply». Прочей информации на коробке нет.

Внутри, помимо самого блока, мы обнаруживаем руководство по установке, комплект съёмных шлейфов, шнур питания и четыре болтика.

Внешний вид



Блок выполнен в корпусе, выкрашенном чёрной матовой краской. Длина корпуса — 180 мм. Занятно, что золотистая надпись «Antec» не нанесена краской, а сделана на отдельной пластинке, вклеенной в выемку крышки блока.



На задней стенке мы обнаруживаем четыре разъёма для съёмных шлейфов — два для видеокарт и два для периферии. Рядом с каждым из разъёмов указана линия +12 В, к которой он подключён.

Схемотехника

Signature скомпонован по немного нетрадиционной схеме — его электроника разнесена на две полноразмерные платы, расположенные лицом друг к другу на противоположных стенках блока.



На первой плате мы обнаруживаем входной фильтр (на снимке — слева вверху), источник дежурного питания (слева внизу) и активный PFC вместе с выпрямителем и высоковольтными сглаживающими конденсаторами (правая часть платы). Благодаря тому, что под эти схемы отдана целая большая плата, расположение деталей получилось заметно более просторным, чем в большинстве блоков сравнимой мощности.

Слева на плате видно электромагнитное реле (прямоугольная деталь в коричневом корпусе) — это один из способов увеличения эффективности, практикующийся в последнее время в большинстве дорогих блоков. Задача реле проста: оно полностью отключает высокое напряжение от входа активного PFC, если блок выключен. Это и увеличивает надёжность блока (детали не стоят под напряжением почём зря), и немного снижает его потребление в режима «сна», когда работает только дежурный источник.



На второй плате расположен силовой трансформатор и его ключ (транзисторы на небольшом радиаторе), выпрямители (диодные сборки на длинном радиаторе, идущем через всю плату), выходные LC-фильтры, схема контроля выходных напряжений и токов, а также два преобразователя постоянного тока («DC-DC converters» в англоязычной литературе), занимающиеся получением напряжений +3,3 В и +5 В из +12 В.

Так как подобные преобразователи в обозримом будущем будут регулярно встречаться и в различных обзорах блоков питания, и в рекламе практически у всех производителей, остановимся на том, зачем они нужны.

Начнём с истории и базовой теории. Простейший импульсный преобразователь выглядит примерно вот так:



Высоковольтная часть (слева от трансформатора T1) показана условно, значение входного напряжения 400 В указано для блоков с активным PFC, в блоках без оного оно ниже, порядка 310 В. Высоковольтная часть построена по схеме прямоходового преобразователя («forward converter»), в настоящее время весьма популярной среди разработчиков блоков питания.

ШИМ-контроллер («PWM control») управляет транзистором Q1, переключая его с частотой порядка нескольких десятков килогерц, к транзистору подключён трансформатор T1, понижающий напряжение и изолирующий низковольтные цепи блока от высоковольтных. Импульсы тока через левый по схеме диод сборки D1 заряжают конденсаторы C1—C3 выходного фильтра и дроссель L1 (если в конденсаторах энергия накапливается в виде электрического поля, то в дросселе — в виде магнитного), при этом ток проходит через подключённую к блоку нагрузку. Между импульсами дроссель разряжается через правый диод сборки D1, при этом ток опять проходит через нагрузку. Дроссель L2 имеет небольшую индуктивность и нужен исключительно для подавления высокочастотных помех.

Благодаря наличию конденсаторов, напряжение на нагрузке колеблется в небольших пределах, поднимаясь во время прихода импульсов и снижаясь между ними. Однако, если импульсы становятся короче, то среднее напряжение начинает снижаться, и наоборот — таким образом, мы получаем возможность контролировать выходное напряжение блока, меняя длительность включения транзистора Q1 на каждом импульсе. Заведя же на ШИМ-контроллер обратную связь с выхода блока, мы сможем не просто контролировать выходное напряжение, а сделать так, чтобы контроллер удерживал его постоянным.

NB: вкратце познакомиться с разными типами импульсных блоков питания можно на английском языке в статье «Switching Power Supply Topology Review» (PDF, 1,09 Мбайта), а также на схеме «Power Supply Topologies Poster» (PDF, 143 кбайта).

Напряжений у нас, однако, в компьютерном блоке питания несколько — и какое именно из них прикажете удерживать? Допустим, мы запустили игрушку — на полную мощность заработала видеокарта, выросла нагрузка на шину +12 В, просело напряжение на этом выходе блока, ШИМ-контроллер попробовал вытянуть его на прежний уровень... и тем самым одновременно увеличил напряжение на выходе +5 В.

Изначально в компьютерных блоках питания для получения нескольких более-менее стабильных выходных напряжений с одного трансформатора использовалась схема групповой стабилизации:



Групповая стабилизация


Чтобы более-менее сбалансировать разные выходы, в конструкцию блока вводится дроссель L1, так называемый дроссель групповой стабилизации — на одном сердечнике наматываются несколько обмоток, по штуке на каждое выходное напряжение. При увеличении тока через одну обмотку в остальных наводится отрицательное напряжение, отчасти компенсирующее описанное выше увеличение выходных напряжений соответствующих им шин.

В результате, мы получаем блок питания с несколькими выходами, который, несмотря на наличие всего одного регулирующего элемента (ШИМ-контроллера и управляемого им транзистора Q1), поддерживает все выходные напряжения на более-менее постоянном уровне. Тем не менее, при сильном дисбалансе нагрузки в такой схеме напряжения начинают заметно уходить от номинала.



Магнитный усилитель


Чтобы получить более стабильные выходные напряжения, несколько лет назад в блоках питания среднего и верхнего уровня стали использовать дополнительные стабилизаторы по так называемой схеме магнитного усилителя, она же схема с насыщаемым сердечником. Точнее говоря, на шине +3,3 В такие стабилизаторы используются очень давно, а в последнее время они распространились и на шину +5 В, в результате чего все три основных выходных напряжения получили независимую стабилизацию.

В схеме с магнитным усилителем дроссель групповой стабилизации разделился на два совершенно отдельных дросселя, L2 и L3, которые к стабилизации напряжений уже не имеют никакого отношения. Зато перед одним из них появился дроссель L1 специальной конструкции, поведением которого можно управлять с помощью контроллера («MagAmp control»), представляющего собой обычный маломощный линейный стабилизатор напряжения. Дроссель производит специфический эффект — он укорачивает приходящие от трансформатора T1 импульсы, причём величина этого укорачивания может меняться в реальном времени:



До и после дросселя L1


А чем короче импульсы — тем меньше напряжение на выходе блока. Соответственно, вторая обмотка трансформатора T1 должна быть намотана с запасом по числу витков, а лишнее напряжение мы «уберём» с помощью дросселя магнитного усилителя L1.

В результате мы получаем два раздельных регулятора: основной ШИМ-контроллер ориентируется только на выход +12 В и держит стабильным напряжение на нём, не обращая внимания на остальные выходы, а дополнительный магнитный усилитель регулирует напряжение +5 В. Что приятно, схема не только проста, но и эффективна — потери энергии на магнитном усилителе близки к нулю.

NB: подробнее про работу магнитных усилителей можно почитать на английском языке в статье «Magnetic Amplifier Control for Simple, Low-Cost, Secondary Regulation» (PDF, 1,5 Мбайта).

Хотя непосредственно магнитный усилитель — это дроссель L1, проще всего узнавать блоки питания с ним по крупным и прекрасно заметным L2 и L3. L1 же значительно меньше по размеру и располагается обычно рядом с силовым трансформатором.

Несмотря на способность магнитных усилителей удерживать стабильные выходные напряжения блока в пределах ±3 % от номинала при любых нагрузках, они имеют ряд недостатков. Во-первых, дополнительные дроссели (L2 и L3) достаточно громоздки, а избавиться от них нельзя — в прямоходовых преобразователях они играют важнейшую роль: в них накапливается переданная через трансформатор энергия, которая затем отдаётся в нагрузку. Во-вторых, каждое выходное напряжение блока требует собственную обмотку на трансформаторе T1, что усложняет его проектирование и изготовление — особенно с учётом, какие мощности сейчас требуется вписывать в заданные габариты.

Преобразователи постоянного тока (DC-DC), с которых мы начали этот разговор, и являются заменой магнитным усилителям:



DC-DC преобразователь


Преобразователь в данном случае образован транзисторами Q2, Q3 и дросселем L2. По сути, это полностью независимый прямоходовый импульсный преобразователь, имеющий собственный ШИМ-контроллер и способный понижать напряжение +12 В до любого нужного уровня, будь то +5 В или +3,3 В. В отличие от основного преобразователя блока, трансформатора он не имеет — он и так уже изолирован от высоковольтной части.

Преимуществ у такой схемы сразу несколько. Во-первых, DC-DC преобразователи питаются от постоянного напряжения +12 В и не требуют отдельной обмотки трансформатора — соответственно, дизайн трансформатора T1 существенно упрощается, на нём остаётся только одна вторичная обмотка. Во-вторых, они могут работать на существенно более высоких частотах, нежели основной преобразователь блока, а потому уменьшается размер дросселя L2 и ёмкости фильтрующих конденсаторов на выходе, в результате чего экономится место внутри блока питания. В-третьих, они имеют собственный независимый контроллер, а потому, как и в случае с магнитными усилителями, выходные напряжения блока регулируются независимо друг от друга, чем обеспечивается отличная их стабильность.

Почему же преобразователи постоянного тока стали использоваться только сейчас, и только в наиболее дорогих блоках? Причина проста — они дороги: микросхема ШИМ-контроллера, несколько транзисторов... Однако, полупроводниковые компоненты постепенно дешевеют, да и указанные выше преимущества в виде упрощения силового трансформатора T1 и меньшего занимаемого объёма помогают немного сэкономить — и вот уже DC-DC преобразователи стали экономически выгодны хотя бы в блоках высшей ценовой категории. Пройдёт пара лет, и они спустятся в блоки среднего класса, как ранее произошло с магнитными усилителями.

Какие преимущества даёт использование DC-DC преобразователей пользователю? Да в общем-то практически никаких. Узнать, используются ли они в данном конкретном блоке, не заглядывая внутрь, можно, но довольно трудно — как минимум, это потребует хорошего осциллографа. Они интересны и удобны для инженеров-разработчиков, а применяться стали потому, что их цена опустилась до разумного уровня.

Являются ли преобразователи постоянного тока новейшим изобретением? Разумеется, нет. Любой инженер-электронщик, чья работа хоть как-то касается импульсных источников питания, нарисует вам на ближайшей салфетке пару-тройку базовых схем, даже не задумываясь — не говоря уж о том, что блоки с такими преобразователями мы встречали и раньше, начиная с блоков SilverStone и заканчивая 1500-ваттными Xigmatek и Thermaltake.



В случае с Antec Signature мы обнаруживаем две платы с преобразователями постоянного тока между двумя радиаторами. Одна плата обеспечивает напряжение +5 В, другая — +3,3 В, питаются они обе от основного источника, рассчитанного на выходное напряжение +12 В. На фотографии хорошо видны дроссели преобразователей — вы можете оценить их скромный размер.



На выходе блока используются конденсаторы серий KZE и KZH производства United Chemi-Con.

Качество сборки блока можно охарактеризовать как великолепное: образцовая пайка, надёжное закрепление всех крупногабаритных деталей, аккуратная укладка проводов. Придраться не к чему.

Шлейфы и разъёмы

Блок оборудован следующими шлейфами и разъёмами:

шлейфом питания материнской платы с 20+4-контактным разъёмом, длиной 54 см;
шлейфом питания процессора с 8-контактным разъёмом, длиной 55 см;
шлейфом питания процессора с 4-контактным разъёмом, длиной 56 см;


двумя шлейфами питания видеокарты с одним 6+2-контактным разъёмом на каждом, длиной по 55 см;
шлейфом с тремя разъёмами питания PATA-винчестеров и одним — дисковода, длиной 54+14+14+14 см;


шлейфом с тремя разъёмами питания SATA-винчестеров, длиной 53+15+15 см.
двумя 8-контактными разъёмами для дополнительных шлейфов;
двумя 6-контактными разъёмами для дополнительных шлейфов.

В комплекте с ним также поставляются:

два шлейфа питания видеокарт с одним 6-контактным разъёмом на каждом, длиной по 55 см;
два шлейфа с тремя разъёмами питания PATA-винчестеров на каждом, длиной по 54+14+14 см.
два шлейфа с тремя разъёмами питания SATA-винчестеров на каждом, длиной по 57+15+15 см.

Набор разъёмов достаточен, но не более того: к блоку без использования переходников можно подключить пару видеокарт и штук шесть жёстких дисков (всего разъёмов SATA — девять, но один шлейф уйдёт на питание оптического привода, и в большинстве корпусов до корзины с винчестерами уже не дотянется). Надо заметить, что с шлейфами питания винчестеров Antec подаёт хороший пример некоторым другим производителям: на два имеющихся на блоке разъёма приходятся четыре шлейфа, два с PATA- и два с SATA-разъёмами питания, так что пользователь сам может выбрать, что ему важнее.

Паспортные параметры



Signature SG-850 рассчитан на долговременную мощность нагрузки до 829 Вт, причём 780 Вт из них он может отдавать по шине +12 В, разделённой на четыре виртуальные линии. Параметры абсолютно адекватные, ни малейшего внутреннего протеста они не вызывают.

Работа в паре с ИБП

В паре с APC SmartUPS SC 620 блок работал с нагрузкой до 380 Вт при питании от розетки, но чтобы переход на батареи был удачным, нагрузку пришлось снизить до 350 Вт. Из ИБП при этом периодически раздавались клокочущие звуки, так что назвать их с блоком совместную работу абсолютно стабильной нельзя.

Стабильность напряжений



Результат кросс-нагрузочного теста вполне характерен для блоков с независимой стабилизацией напряжений — +12 В держится идеально при любом балансе нагрузок, +3,3 В отклоняется менее чем на 3 %, и лишь отклонение напряжение +5 В слегка превышает 3 %, да и то только при предельной нагрузке на блок. Напомним, что допустимое отклонение, согласно стандарту, до 5 %, так что Signature в этом тесте показал великолепный результат.

Пульсации выходных напряжений



На шине +12 В всё замечательно, а вот на +5 В и +3,3 В присутствуют заметные пульсации, причём отдельные пики превышают допустимый предел, равный 50 мВ. Впрочем, ничего по-настоящему критичного на осциллограмме не видно.

Обратите внимание, насколько по-разному выглядят пульсации на низковольтных шинах и +12 В — это следствие того, что последняя обеспечивается основным преобразователем блока, а первые имеют собственные импульсные стабилизаторы, работающие на высокой частоте.

Регулировка скорости вентилятора



В блоке используется вентилятор Nidec Beta SL, модель D08A-12PS3-06AH1 — к сожалению, отсутствующая на сайте компании Nidec. Несмотря на большую мощность блока, вентилятор имеет скромный типоразмер 80x80x25 мм. Он четырёхпроводной, с ШИМ-регулировкой скорости вращения, что должно обеспечить широкий рабочий диапазон скоростей.



И действительно, скорость вентилятора меняется в зависимости от нагрузки на блок более чем в три раза. При нагрузках до 400 Вт он вращается примерно на 700 об/мин, при этом блок совершенно бесшумен. Дальше скорость начинает расти по закону, близкому к линейному, но заметным шум можно назвать разве что при нагрузке выше 650 Вт. В целом же блок можно смело отнести к наиболее тихим среди присутствующих в продаже, особенно при работе на небольшой нагрузке.

Таким образом, Antec Signature в очередной раз опровергает тезис, что для тихой работы обязательно необходим большой вентилятор. Главное — не размер, а умение грамотно проектировать охлаждение.

Впрочем, надо заметить, что в корпусах с верхним расположением блока питания и недостаточно эффективным продувом внутреннего объёма при большой нагрузке блок может дополнительно подогреваться горячим воздухом, что приведёт к дальнейшему увеличению скорости вращения вентилятора — и тогда он начнёт издавать заметный свист. Поэтому с точки зрения тишины лучше выбирать корпуса с нижним расположением блока питания — но этот совет касается, впрочем, не только Antec Signature.

КПД и коэффициент мощности



КПД блока очень неплох, в широком диапазоне мощностей — от 300 до 600 Вт — он уверенно держится на уровне выше 88 %, и даже на полной нагрузке снижается лишь до 86 %. Коэффициент мощности также не подвёл, примерно на половине графика он колеблется в районе 0,99.

Дежурный источник +5Vsb



Дежурный источник в Signature рассчитан на ток до 3 А, и при полной нагрузке его напряжение всего на 0,1 В ниже номинального, что полностью в пределах допустимого.

Заключение

Что же, Antec Signature произвёл очень хорошее впечатление: отличное качество сборки, прекрасные электрические параметры, полноценный набор шлейфов и разъёмов, а также настолько тихая работа на небольших нагрузках, что остаётся лишь удивляться, как такое возможно на блоке с всего лишь 80-мм вентилятором. Неудивительно, что именно серию Signature компания Antec считает лучшей среди своей продукции, несмотря на не самую высокую мощность.

Пожалуй, единственным минусом этого блока можно назвать его цену: на момент подготовки статьи в московской рознице за рассмотренную нами 850-Вт версию пришлось бы заплатить около 10 тысяч рублей, а за 650-Вт — около 8 тысяч. Но если такая цена вам не кажется слишком высокой, то Antec Signature вас не разочарует.

Заключение

В общем-то, трудно было ожидать от блоков, которые три именитых производителя считают лучшими моделями в своих продуктовых линейках, плохих результатов. И действительно, Antec Signature, Enermax Revolution 85+ и Seasonic M12D не продемонстрировали ни одного сколь-нибудь серьёзного технического недостатка: мощные, качественно сделанные, с хорошими электрическими параметрами и тихой работой, прекрасно подходящие для компьютеров верхнего уровня, в том числе, оснащённых двумя-тремя видеокартами. В общем-то, больше сказать здесь нечего — какой бы блок из трёх вы ни выбрали, он вас не разочарует. В минус им можно записать — причём опять же всем трём сразу — разве что немалую цену.

Если же говорить о новейших технологиях, то здесь резко выделяется Enermax Revolution 85+ — это первый блок питания среди побывавших у нас на тестах, который смог продемонстрировать КПД выше 90 %. Двухтрансформаторная схема с идеальной балансировкой и способностью работать с любой нагрузкой от нуля ватт, синхронный выпрямитель на шине +12 В (впервые в нашей практике!), независимые преобразователи постоянного тока — инженеры Enermax действительно серьёзно вложились в разработку этого блока. Если вы интересуетесь силовой электроникой и хотите посмотреть на пути развития блоков компьютерных питания в ближайшем будущем, то Revolution 85+ — хороший пример.

Две другие модели, Antec Signature и Seasonic M12D, в схемотехническом плане более обычны: их разработчики вместо революционных нововведений предпочли оттачивать уже известные и использующиеся технологии (даже DC-DC преобразователи мы видели «вживую» более двух лет тому назад). Догнать Enermax по продемонстрированным параметрам им не удалось, но и отставание невелико — КПД этих блоков меньше на 1—3 %, вентиляторы немного шумнее под большой нагрузкой, по остальным же пунктам разницы и вовсе нет.

В целом же, уделив столь большое внимание схемотехнике блоков питания, мы хотели донести до вас две мысли. Во-первых, компьютерные блоки питания не стоят на месте, они развиваются и совершенствуются, и заключается это развитие отнюдь не только в изменении формы отверстий вентиляционной решётки и цвета подсветки вентилятора. Появляются новые контроллеры, увеличиваются рабочие частоты, одни схемотехнические решения сменяются другими... Между двумя блоками питания, выпущенными с разницей десять лет, нет уже практически ничего общего, хотя, на первый взгляд, детали стоят примерно того же цвета и формы. Во-вторых, несмотря на это, стоит несколько скептически относиться к заявлениям производителей о новейших, только-только изобретённых и со всех сторон запатентованных технологиях. Те или иные новые узлы в серийно производимых блоках питания появляются тогда, когда это оказывается экономически выгодно. Взять хотя бы магнитные усилители: они давным-давно используются в качестве стабилизаторов шины +3,3 В, вы найдете такой стабилизатор в любом приличном 250-ваттном ATX-блоке конца прошлого века, но лишь в последние годы, когда у блоков питания резко выросла нагрузочная способность шины +12 В, использование двух магнитных усилителей — то, что мы называем «независимая стабилизация выходных напряжений» — получило смысл. Точно так же происходит и с прочими технологиями: они существуют, но до какого-то времени отдача от их использования попросту не покрывает затрат.

Чего мы можем ожидать в будущем? Ну, например, цифровых программируемых ШИМ-контроллеров, алгоритм работы которых позволяет адаптироваться «на лету» под разные типы нагрузки. Они уже существуют, но от широкого использования в блоках питания пока далеки, по причинам как несовершенства технологии, так и высокой стоимости. И это, разумеется, не единственный пример.
 



Источник: Fcenter от 02.03.2009

Множество статей на других языках, можно найти на сайте компании Antec в разделе Обзоры.